Skip to main content Skip to main navigation menu Skip to site footer

Comparison of chlorhexidine 0.7% and modified Petroff's method on sputum decontamination for culture method to detect Mycobacterium tuberculosis

  • Rizky Hurriah Lumbessy ,
  • Ni Made Mertaniasih ,
  • Lindawati Alimsardjono ,
  • Soedarsono Soedarsono ,

Abstract

Background: Tuberculosis (TB) is an infectious disease that is the leading cause of death from a single infectious agent worldwide. Culture is still the gold standard for the diagnosis of pulmonary TB. As an important specimen, sputum is often contaminated by normal flora at the time of collection, making the decontamination process an essential step of Mycobacterium tuberculosis culture. Decontamination with chlorhexidine 0.7% is expected to improve the detection of Mycobacterium tuberculosis in the culture method better than Modified Petroff's method.

Methods: This research is an experimental study. Sputum was collected from pulmonary TB patients. Each sputum was decontaminated with chlorhexidine 0,7% and others with Modified Petroff's. Decontaminated sputum inoculated on Lowenstein-Jensen media. Samples were incubated, and evaluated the recovery rate of Mycobacterium tuberculosis. Data were analyzed using SPSS version 25.0 for Windows.

Results: In total, we collected 16 sputum with 11 (68.75%) direct smear positive, 14 (87.5%) smear positive by chlorhexidine 0.7% method, and 13 (81.25%) by Modified Petroff's method. The number of cultures positive for Mycobacterium tuberculosis by chlorhexidine 0.7% method was 14 (87.5%), of which 11 (68.75%) have specific colony characteristics of Mycobacterium tuberculosis, 3 (18.75%) non-tuberculous mycobacteria, and 1 (6.24%) mixed. In Modified Petroff's, 6 (37.5%) were positive cultures and showed only growth of Mycobacterium tuberculosis. The contamination rate was 1 (6.25%) using chlorhexidine 0.7% and 8 (50%) using Modified Petroff’s method.

Conclusion: Chlorhexidine 0.7% has a higher recovery rate in the culture of Mycobacterium tuberculosis compared with Modified Petroff's, showing recovery of non-tuberculous mycobacteria and a lower contamination rate.

References

  1. World Health Organization (WHO). Global Tuberculosis Report 2021. Geneva, Switzerland. 2021. [Cited 20th August 2022] [Available from: https://www.who.int/publications/i/item/9789240037021]
  2. Kementerian Kesehatan Republik Indonesia. Dashboard TB. TBC Indonesia. 2022. [Cited 20th August 2022] [Available from: https://tbindonesia.or.id/pustaka-tbc/dashboard-tb/]
  3. Lyon SM, Rossman MD. Pulmonary Tuberculosis. Microbiol Spectr. 2017;5(1):24.
  4. Ticlla MR, Hella J, Hiza H, Sasamalo M, Mhimbira F, Rutaihwa LK, et al. The Sputum Microbiome in Pulmonary Tuberculosis and Its Association With Disease Manifestations: A Cross-Sectional Study. Front Microbiol. 2021;12:633396
  5. Biswas S, Das A, Sinha A, Das S, Bairagya T. The role of induced sputum in the diagnosis of pulmonary tuberculosis. Lung India. 2013;30(3):199-202.
  6. Gautam G, Singh T, Sharma T, Regmi SM. Decontamination of sputum sample for the isolation of mycobacterium tuberculosis . J Gandaki Med Coll. 2010;3(1):32–35.
  7. Ryu YJ. Diagnosis of Pulmonary Tuberculosis: Recent Advances and Diagnostic Algorithms. Tuberc Respir Dis (Seoul). 2015;78(2):64-71.
  8. Drain PK, Gardiner J, Hannah H, Broger T, Dheda K, Fielding K, et al. Guidance for Studies Evaluating the Accuracy of Biomarker-Based Nonsputum Tests to Diagnose Tuberculosis. J Infect Dis. 2019;220(220 Suppl 3):S108–S115.
  9. Lin P ling, Flynn JL. The End of the Binary Era: Revisiting the Spectrum of Tuberculosis. J Immunol. 2018;201(9):2541–2548.
  10. Aggarwal A, Singhal R, Bhalla M, Myneedu VP. Study of Contaminants Growing on Lowenstein Jensen Media during Mycobacterium tuberculosis Culture from a Respiratory Speciality Hospital in Northern India. J Clin Diagnostic Res. 2020;14(3):15-19.
  11. Chatterjee M, Bhattacharya S, Karak K, Dastidar SG. Effects of different methods of decontamination for successful cultivation of Mycobacterium tuberculosis. Indian J Med Res. 2013;138(4):541–548.
  12. Mahon CR, Lehman DC, Manuselis G. Testbook of Diagnostic Microbiology. 15th ed. Volume 15. Elsevier: Missouri. 2015.
  13. Buijtels PCAM, Petit PLC. Comparison of NaOH-N-acetyl cysteine and sulfuric acid decontamination methods for recovery of mycobacteria from clinical specimens. J Microbiol Methods. 2005;62(1):83–88.
  14. Asmar S, Drancourt M. Chlorhexidine decontamination of sputum for culturing Mycobacterium tuberculosis. BMC Microbiol. 2015;15(1):155.
  15. Stephenson D, Perry A, Nelson A, Robb AE, Thomas MF, Bourke SJ, et al. Decontamination Strategies Used for AFB Culture Significantly Reduce the Viability of Mycobacterium abscessus Complex in Sputum Samples from Patients with Cystic Fibrosis. Microorganisms. 2021;9(8):1597.
  16. Palomino JC, Portaels F. Effects of Decontamination Methods and Culture Conditions on Viability of Mycobacterium ulcerans in the BACTEC System. J Clin Microbiol. 1998;36(2):402–408.
  17. Sharma M, Misra R, Gandham N, Jadhav S, Angadi K, Wilson V. Comparison of modified Petroff′s and N-acetyl-L-cysteine-sodium hydroxide methods for sputum decontamination in tertiary care hospital in India. Med J Dr DY Patil Univ. 2012;5(2):97-100.
  18. Public Health England. UK Standards for Microbiology Investigations: Investigation of Cerebrospinal Fluid. Bacteriology. 2020;40(7.3):1–56.
  19. Kubica GP, Dye WE, Cohn ML, Middlebrook G. Sputum digestion and decontamination with N-acetyl-L-cysteine-sodium hydroxide for culture of mycobacteria. Am Rev Respir Dis. 1963;87(5):775–779.
  20. Petroff SA. A New and Rapid Method For the Isolation and Cultivation of Tubercle Bacilli Directly from the Sputum And Feces. J Exp Med. 1915;21(1):38–42.
  21. Chaudhary S, Mishra B. Comparison of hypertonic saline-sodium hydroxide method with modified Petroff’s method for the decontamination and concentration of sputum samples. Int J Infect Microbiol. 2013;2(3):78–81.
  22. Mtafya B, Sabiiti W, Sabi I, John J, Sichone E, Ntinginya NE, et al. Molecular Bacterial Load Assay Concurs with Culture on NaOH-Induced Loss of Mycobacterium tuberculosis Viability. Miller MB, editor. J Clin Microbiol. 2019;57(7):1–9.
  23. Wang J, Wang Y, Ling X, Zhang Z, Deng Y, Tian P. Comparison of Sputum Treated with Power Ultrasound and Routine NALC-NaOH Methods for Mycobacterial Culture: A Prospective Study. J Clin Med. 2022;11(16):4694.
  24. Tripathi K, Tripathi PC, Nema S, Shrivastava AK, Dwiwedi K, Dhanvijay AK. Modified Petroff’s Method: an Excellent Simplified Decontamination Technique in Comparison with Petroff’s Method. Int J Recent Trends Sci Technol. 2014;10(3):461-464.
  25. Stinson KW, Eisenach K, Kayes S, Siddiqi S, Nakashima S, Hashizume H, et al. A publication of the Global Laboratory Initiative a Working Group of the Stop TB Partnership. Mycobacteriology Laboratory Manual. World Health Organization. 2014.
  26. Cappuccino JG, Welsh C. Microbiology: A Laboratory Manual. Twelfth. New York: Pearson Education. 2019.
  27. Addise D, Bitew A, Yaregal Z, Yenew B, Mollalign H, Diriba G, et al. effect of 1.5% sodium hydroxide final concentration on recovery rate of Mycobacterial Species and decontamination of other Bacterial and Fungal contaminants on sputum. Ethiop J public Heal Nutr. 2016;1(1):57–67.
  28. Steingart KR, Ng V, Henry M, Hopewell PC, Ramsay A, Cunningham J, et al. Sputum processing methods to improve the sensitivity of smear microscopy for tuberculosis: a systematic review. Lancet Infect Dis. 2006;6(10):664–674.
  29. Piersimoni C, Scarparo C, Callegaro A, Tosi CP, Nista D, Bornigia S, et al. Comparison of MB/BacT ALERT 3D System with Radiometric BACTEC System and Löwenstein-Jensen Medium for Recovery and Identification of Mycobacteria from Clinical Specimens: a Multicenter Study. J Clin Microbiol. 2001;39(2):651–657.
  30. Peres RL, Maciel EL, Morais CG, Ribeiro FCK, Vinhas SA, Pinheiro C, et al. comparison of two concentrations of NALC-NaOH for decontamination of sputum for mycobacterial culture. Int J Tuberc Lung Dis. 2009;13(12):1572–1575.
  31. Best M, Sattar SA, Springthorpe VS, Kennedy ME. Efficacies of selected disinfectants against Mycobacterium tuberculosis. J Clin Microbiol. 1990;28(10):2234–2239.
  32. Rikimaru T, Kondo M, Kondo S, Oizumi K. Efficacy of common antiseptics against mycobacteria. Int J Tuberc Lung Dis. 2000;4(6):570–576.
  33. Shinoda N, Mitarai S, Suzuki E, Watanabe M. Disinfectant-susceptibility of multi-drug-resistant Mycobacterium tuberculosis isolated in Japan. Antimicrob Resist Infect Control. 2016;5(1):3.
  34. McDonnell GE. Antisepsis, Disinfection, and Sterilization: types, action, and resistance. Washington: ASM Press. 2017.
  35. Rzycki M, Drabik D, Szostak-Paluch K, Hanus-Lorenz B, Kraszewski S. Unraveling the mechanism of octenidine and chlorhexidine on membranes: Does electrostatics matter? Biophys J. 2021;120(16):3392–3408.
  36. Horner C, Mawer D, Wilcox M. Reduced susceptibility to chlorhexidine in staphylococci: is it increasing and does it matter? J Antimicrob Chemother. 2012;67(11):2547–2559.
  37. Brookes ZLS, Belfield LA, Ashworth A, Casas-Agustench P, Raja M, Pollard AJ, et al. Effects of chlorhexidine mouthwash on the oral microbiome. J Dent. 2021;113:103768.
  38. Karpiński TM, Szkaradkiewicz AK. Chlorhexidine--pharmaco-biological activity and application. Eur Rev Med Pharmacol Sci. 2015;19(7):1321–1326.
  39. Lim KS, Kam PCA. Chlorhexidine - Pharmacology and Clinical Applications. Anaesth Intensive Care. 2008;36(4):502–512.
  40. Cieplik F, Jakubovics NS, Buchalla W, Maisch T, Hellwig E, Al-Ahmad A. Resistance Toward Chlorhexidine in Oral Bacteria – Is There Cause for Concern? Front Microbiol. 2019;10:587.
  41. Theron G, Venter R, Calligaro G, Smith L, Limberis J, Meldau R, et al. Xpert MTB/RIF Results in Patients With Previous Tuberculosis: Can We Distinguish True From False Positive Results? Clin Infect Dis. 2016;62(8):995–1001.
  42. Bradner L, Robbe-Austerman S, Beitz DC, Stabel JR. Chemical Decontamination with N -Acetyl- l -Cysteine–Sodium Hydroxide Improves Recovery of Viable Mycobacterium avium subsp. paratuberculosis Organisms from Cultured Milk. J Clin Microbiol. 2013;51(7):2139–2146.
  43. Ferroni A, Vu-Thien H, Lanotte P, Le Bourgeois M, Sermet-Gaudelus I, Fauroux B, et al. Value of the Chlorhexidine Decontamination Method for Recovery of Nontuberculous Mycobacteria from Sputum Samples of Patients with Cystic Fibrosis. J Clin Microbiol. 2006;44(6):2237–2239.
  44. De Bel A, De Geyter D, De Schutter I, Mouton C, Wellemans I, Hanssens L, et al. Sampling and Decontamination Method for Culture of Nontuberculous Mycobacteria in Respiratory Samples of Cystic Fibrosis Patients. J Clin Microbiol. 2013;51(12):4204–4206.
  45. Gitteh E, Kweku Otu J, Jobarteh T, Mendy F, Faal-Jawara IT, Ofori-Anyinam NB, et al. Evaluation of sodium hydroxide–N-acetyl-L-cysteine and 0.7% chlorhexidine decontamination methods for recovering Mycobacterium tuberculosis from sputum samples: A comparative analysis (The Gambia Experience). Int J Mycobacteriology. 2016;5(1):S167–S168.
  46. Best M, Springthorpe VS, Sattar SA. Feasibility of a combined carrier test for disinfectants: studies with a mixture of five types of microorganisms. Am J Infect Control. 1994;22(3):152–162.
  47. Puasa M, Chayati N. Modifiable and non-modifiable factors on previous tuberculosis treatment as a predisposition of multi drug resistance tuberculosis (mdr-tb): scoping review. Bali Medical Journal. 2021;10(3):1294–1303.
  48. Sarro YD, Kone B, Diarra B, Kumar A, Kodio O, Fofana DB, et al. Simultaneous diagnosis of tuberculous and non-tuberculous mycobacterial diseases: Time for a better patient management. Clin Microbiol Infect Dis. 2018;3(3):1–8.
  49. Putra Manuaba IBA, Dewi NGAPLS, Prabawa IPY, Bhargah A, Darmayani S, Wu CC. Simulation-based learning compared with conventional methods in procedural skill. Indonesia Journal of Biomedical Science. 2020;14(2):86–90.

How to Cite

Lumbessy, R. H., Mertaniasih, N. M. ., Alimsardjono, L. ., & Soedarsono, S. (2023). Comparison of chlorhexidine 0.7% and modified Petroff’s method on sputum decontamination for culture method to detect Mycobacterium tuberculosis. Bali Medical Journal, 12(1), 222–227. https://doi.org/10.15562/bmj.v12i1.3832

HTML
12

Total
7

Share

Search Panel

Rizky Hurriah Lumbessy
Google Scholar
Pubmed
BMJ Journal


Ni Made Mertaniasih
Google Scholar
Pubmed
BMJ Journal


Lindawati Alimsardjono
Google Scholar
Pubmed
BMJ Journal


Soedarsono Soedarsono
Google Scholar
Pubmed
BMJ Journal